A plugin for parsing xlsx files in Flatfile.
npm i @flatfile/plugin-xlsx-extractor
The @flatfile/plugin-xlsx-extractor
plugin is designed to extract structured data from Excel files. It utilizes various libraries to parse Excel files and retrieve the structured data efficiently.
Event Type:
listener.on('file:created')
Supported file types:
.xls
, .xlsx
, .xlsm
, .xlsb
, .xltx
, .xltm
When embedding Flatfile, this plugin should be deployed in a server-side listener. Learn more
raw
- boolean
In Excel, you could have formatting on a text cell (i.e. date formatting). By default, Flatfile will just take the formatted text versus the raw values. Set this value to true to take the raw values and disregard how it's displayed in Excel.
rawNumbers
- boolean
In Excel, you could have rounding or formatting on a number cell to only display say 2 decimal places. By default, Flatfile will just take the displayed decimal places versus the raw numbers. Set this value to true to take the raw numbers and disregard how it's displayed in Excel.
dateNF
- string
- (optional)The dateNF
parameter allows you to specify the date format for parsing
dates. (i.e. yyyy-mm-dd
)
chunkSize
- default: "10_000"
- number
- (optional)The chunkSize
parameter allows you to specify the quantity of records to in
each chunk.
parallel
- default: "1"
- number
- (optional)The parallel
parameter allows you to specify the number of chunks to process
in parallel.
headerDetectionOptions
- Object
- (optional)The headerDetectionOptions
parameter allows you to specify the options for
detecting headers in the file. By default, the first 10 rows are scanned for
the row with the most non-empty cells.
skipEmptyLines
- default: "false"
- boolean
- (optional)The skipEmptyLines
parameter allows you to specify if empty lines should be
skipped. By default, empty lines are included.
debug
- default: "false"
- boolean
- (optional)The debug
parameter lets you toggle on/off helpful debugging messages for
development purposes.
api.files.download
api.files.get
api.files.update
api.jobs.ack
api.jobs.complete
api.jobs.create
api.jobs.fail
api.jobs.update
api.records.insert
api.workbooks.create
Listen for an Excel file (all extensions supported) to be uploaded to Flatfile. The platform will then extract the file automatically. Once complete, the file will be ready for import in the Files area.
npm i @flatfile/plugin-xlsx-extractor
import { ExcelExtractor } from "@flatfile/plugin-xlsx-extractor";
listener.js
listener.use(ExcelExtractor());
Additional options
listener.use(ExcelExtractor({ raw: true, rawNumbers: true }));
Three detection options are provided for detecting headers in the file: default
, explicitHeaders
, and specificRows
. By default, the first 10 rows are scanned for the row with the most non-empty cells. This row is then used as the header row.
It looks at the first rowsToSearch
rows and takes the row
with the most non-empty cells as the header, preferring the earliest
such row in the case of a tie.
listener.use(ExcelExtractor());
// or...
listener.use(
ExcelExtractor({
headerDetectionOptions: {
algorithm: "default",
rowsToSearch: 30, // Default is 10
},
})
);
This implementation simply returns an explicit list of headers it was provided with.
listener.use(
ExcelExtractor({
headerDetectionOptions: {
algorithm: "explicitHeaders",
headers: ["fiRsT NamE", "LaSt nAme", "emAil"],
},
})
);
This implementation looks at specific rows and combines them into a single header. For example, if you knew that the header was in the third row, you could pass it { rowNumbers: [2] }
.
listener.use(
ExcelExtractor({
headerDetectionOptions: {
algorithm: "specificRows",
rowNumbers: [2], // 0 based
},
})
);
This implementation attempts to detect the first data row and select the previous row as the header. If the data row cannot be detected due to all the sample rows being full and not castable to a number or boolean type, it also will attempt to detect a sub header row by checking following rows after a header is detected for significant fuzzy matching. If over half of the fields in a possible sub header row fuzzy match with the originally detected header row, the sub header row becomes the new header.
listener.use(
ExcelExtractor({
headerDetectionOptions: {
algorithm: "dataRowAndSubHeaderDetection",
rowsToSearch: 30, // Default is 10
},
})
);
In this example, the ExcelExtractor
is initialized with optional options, and then registered as middleware with the Flatfile listener. When an Excel file is uploaded, the plugin will extract the structured data and process it using the extractor's parser.
listener.js
import { ExcelExtractor } from "@flatfile/plugin-xlsx-extractor";
export default async function (listener) {
// Define optional options for the extractor
const options = {
raw: true,
rawNumbers: true,
};
// Initialize the Excel extractor
const excelExtractor = ExcelExtractor(options);
// Register the extractor as a middleware for the Flatfile listener
listener.use(excelExtractor);
// When an Excel file is uploaded, the data will be extracted and processed using the extractor's parser.
}